skip to main content


Search for: All records

Creators/Authors contains: "Matocq, Marjorie D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hybridization is a common process that has broadly impacted the evolution of multicellular eukaryotes; however, how ecological factors influence this process remains poorly understood. Here, we report the findings of a 3-year recapture study of the Bryant’s woodrat (Neotoma bryanti) and desert woodrat (Neotoma lepida), two species that hybridize within a creosote bush (Larrea tridentata) shrubland in Whitewater, CA, USA. We used a genotype-by-sequencing approach to characterize the ancestry distribution of individuals across this hybrid zone coupled with Cormack–Jolly–Seber modeling to describe demography. We identified a high frequency of hybridization at this site with ~40% of individuals possessing admixed ancestry, which is the result of multigenerational backcrossing and advanced hybrid-hybrid crossing. F1, F2, and advanced generation hybrids had apparent survival rates similar to parental N. bryanti, while parental and backcross N. lepida had lower apparent survival rates and were far less abundant. Compared to bimodal hybrid zones where hybrids are often rare and selected against, we find that hybrids at Whitewater are common and have comparable survival to the dominant parental species, N. bryanti. The frequency of hybridization at Whitewater is therefore likely limited by the abundance of the less common parental species, N. lepida, rather than selection against hybrids.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Ecotones, characterized by adjacent yet distinct biotic communities, provide natural laboratories in which to investigate how environmental selection influences the ecology and evolution of organisms. For wild herbivores, differential plant availability across sharp ecotones may be an important source of dietary‐based selection.

    We studied small herbivore diet composition across a sharp ecotone where two species of woodrat,Neotoma bryantiandN.lepida, come into secondary contact with one another and hybridize. We quantified woodrat dietary preference through trnLmetabarcoding of field‐collected fecal pellets and experimental choice trials. Despite gene flow, parentalN. bryantiandN. lepidamaintain distinct diets across this fine spatial scale, and across temporal scales that span both wet and dry conditions.

    Neotoma bryantimaintained a more diverse diet, withFrangula californica(California coffeeberry) making up a large portion of its diet.Neotoma lepidamaintains a less diverse diet, withPrunus fasciculata(desert almond) comprising more than half of its diet. BothF. californicaandP. fasciculataare known to produce potentially toxic plant secondary compounds (PSCs), which should deter herbivory, yet these plants have relatively high nutritional value as measured by crude protein content.

    Neotoma bryantiandN. lepidaconsumedF. californicaandP. fasciculata, respectively, in greater abundance than these plants are available on the landscape—indicating dietary selection. Finally, experimental preference trials revealed thatN. bryantiexhibited a preference forF. californica, whileN. lepidaexhibited a relatively stronger preference forP. fasciculata. We find thatN. bryantiexhibit a generalist herbivore strategy relative toN. lepida, which exhibit a more specialized feeding strategy in this study system.

    Our results suggest that woodrats respond to fine‐scale environmental differences in plant availability that may require different metabolic strategies in order to balance nutrient acquisition while minimizing exposure to potentially toxic PSCs.

     
    more » « less
  4. Abstract

    When organisms experience secondary contact after allopatric divergence, genomic regions can introgress differentially depending on their relationships with adaptation, reproductive isolation, recombination, and drift. Analyses of genome‐wide patterns of divergence and introgression could provide insight into the outcomes of hybridization and the potential relationship between allopatric divergence and reproductive isolation. Here, we generate population genetic data (26,262 SNPs; 353 individuals) using a reduced‐representation sequencing approach to quantify patterns of ancestry, differentiation, and introgression between a pair of ecologically distinct mammals—the desert woodrat (N.lepida) and Bryant's woodrat (N.bryanti)—that hybridize at a sharp ecotone in southern California. Individual ancestry estimates confirmed that hybrids were rare in this bimodal hybrid zone, and entirely consisted of a few F1individuals and a broad range of multigenerational backcrosses. Genomic cline analyses indicated more than half of loci had elevated introgression from one genomic background into the other. However, introgression was not associated with relative or absolute measures of divergence, and loci with extreme values for both were not typically found near detoxification enzymes previously implicated in dietary specialization for woodrats. The decoupling of differentiation and introgression suggests that processes other than adaptation, such as drift, may underlie the extreme clines at this contact zone.

     
    more » « less
  5. Abstract

    Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome‐wide markers facilitates studies of local adaptation in non‐model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype‐environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.

     
    more » « less